3.3.73 \(\int \frac {1}{x \sqrt {c+d x^3} (4 c+d x^3)} \, dx\) [273]

Optimal. Leaf size=65 \[ -\frac {\tan ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {3} \sqrt {c}}\right )}{6 \sqrt {3} c^{3/2}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{6 c^{3/2}} \]

[Out]

-1/6*arctanh((d*x^3+c)^(1/2)/c^(1/2))/c^(3/2)-1/18*arctan(1/3*(d*x^3+c)^(1/2)*3^(1/2)/c^(1/2))/c^(3/2)*3^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 65, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {457, 88, 65, 214, 209} \begin {gather*} -\frac {\text {ArcTan}\left (\frac {\sqrt {c+d x^3}}{\sqrt {3} \sqrt {c}}\right )}{6 \sqrt {3} c^{3/2}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{6 c^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x*Sqrt[c + d*x^3]*(4*c + d*x^3)),x]

[Out]

-1/6*ArcTan[Sqrt[c + d*x^3]/(Sqrt[3]*Sqrt[c])]/(Sqrt[3]*c^(3/2)) - ArcTanh[Sqrt[c + d*x^3]/Sqrt[c]]/(6*c^(3/2)
)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 88

Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), In
t[(e + f*x)^p/(a + b*x), x], x] - Dist[d/(b*c - a*d), Int[(e + f*x)^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d,
e, f, p}, x] &&  !IntegerQ[p]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{x \sqrt {c+d x^3} \left (4 c+d x^3\right )} \, dx &=\frac {1}{3} \text {Subst}\left (\int \frac {1}{x \sqrt {c+d x} (4 c+d x)} \, dx,x,x^3\right )\\ &=\frac {\text {Subst}\left (\int \frac {1}{x \sqrt {c+d x}} \, dx,x,x^3\right )}{12 c}-\frac {d \text {Subst}\left (\int \frac {1}{\sqrt {c+d x} (4 c+d x)} \, dx,x,x^3\right )}{12 c}\\ &=-\frac {\text {Subst}\left (\int \frac {1}{3 c+x^2} \, dx,x,\sqrt {c+d x^3}\right )}{6 c}+\frac {\text {Subst}\left (\int \frac {1}{-\frac {c}{d}+\frac {x^2}{d}} \, dx,x,\sqrt {c+d x^3}\right )}{6 c d}\\ &=-\frac {\tan ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {3} \sqrt {c}}\right )}{6 \sqrt {3} c^{3/2}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{6 c^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.05, size = 59, normalized size = 0.91 \begin {gather*} -\frac {\sqrt {3} \tan ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {3} \sqrt {c}}\right )+3 \tanh ^{-1}\left (\frac {\sqrt {c+d x^3}}{\sqrt {c}}\right )}{18 c^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x*Sqrt[c + d*x^3]*(4*c + d*x^3)),x]

[Out]

-1/18*(Sqrt[3]*ArcTan[Sqrt[c + d*x^3]/(Sqrt[3]*Sqrt[c])] + 3*ArcTanh[Sqrt[c + d*x^3]/Sqrt[c]])/c^(3/2)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.40, size = 433, normalized size = 6.66

method result size
default \(\frac {i \sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (d \,\textit {\_Z}^{3}+4 c \right )}{\sum }\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {2}\, \sqrt {\frac {i d \left (2 x +\frac {-i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {d \left (x -\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{-3 \left (-c \,d^{2}\right )^{\frac {1}{3}}+i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \sqrt {-\frac {i d \left (2 x +\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}+\left (-c \,d^{2}\right )^{\frac {1}{3}}}{d}\right )}{2 \left (-c \,d^{2}\right )^{\frac {1}{3}}}}\, \left (i \left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, d -i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {2}{3}}+2 \underline {\hspace {1.25 ex}}\alpha ^{2} d^{2}-\left (-c \,d^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha d -\left (-c \,d^{2}\right )^{\frac {2}{3}}\right ) \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}-\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right ) \sqrt {3}\, d}{\left (-c \,d^{2}\right )^{\frac {1}{3}}}}}{3}, \frac {2 i \left (-c \,d^{2}\right )^{\frac {1}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha ^{2} d -i \left (-c \,d^{2}\right )^{\frac {2}{3}} \sqrt {3}\, \underline {\hspace {1.25 ex}}\alpha +i \sqrt {3}\, c d -3 \left (-c \,d^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha -3 c d}{6 d c}, \sqrt {\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{d \left (-\frac {3 \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}+\frac {i \sqrt {3}\, \left (-c \,d^{2}\right )^{\frac {1}{3}}}{2 d}\right )}}\right )}{2 \sqrt {d \,x^{3}+c}}\right )}{36 d^{2} c^{2}}-\frac {\arctanh \left (\frac {\sqrt {d \,x^{3}+c}}{\sqrt {c}}\right )}{6 c^{\frac {3}{2}}}\) \(433\)
elliptic \(\text {Expression too large to display}\) \(1508\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(d*x^3+4*c)/(d*x^3+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/36*I/d^2/c^2*2^(1/2)*sum((-c*d^2)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^
2)^(1/3))^(1/2)*(d*(x-1/d*(-c*d^2)^(1/3))/(-3*(-c*d^2)^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1
/d*(I*3^(1/2)*(-c*d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-c*d^2)^(1/3)*_alpha*3
^(1/2)*d-I*3^(1/2)*(-c*d^2)^(2/3)+2*_alpha^2*d^2-(-c*d^2)^(1/3)*_alpha*d-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2
)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),1/6/d*(2*I*(-c*d^
2)^(1/3)*3^(1/2)*_alpha^2*d-I*(-c*d^2)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*(-c*d^2)^(2/3)*_alpha-3*c*d)/c,(I*
3^(1/2)/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*d+4
*c))-1/6*arctanh((d*x^3+c)^(1/2)/c^(1/2))/c^(3/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(d*x^3+4*c)/(d*x^3+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((d*x^3 + 4*c)*sqrt(d*x^3 + c)*x), x)

________________________________________________________________________________________

Fricas [A]
time = 3.35, size = 148, normalized size = 2.28 \begin {gather*} \left [-\frac {2 \, \sqrt {3} \sqrt {c} \arctan \left (\frac {\sqrt {3} \sqrt {d x^{3} + c}}{3 \, \sqrt {c}}\right ) - 3 \, \sqrt {c} \log \left (\frac {d x^{3} - 2 \, \sqrt {d x^{3} + c} \sqrt {c} + 2 \, c}{x^{3}}\right )}{36 \, c^{2}}, -\frac {\sqrt {3} \sqrt {-c} \log \left (\frac {d x^{3} + 2 \, \sqrt {3} \sqrt {d x^{3} + c} \sqrt {-c} - 2 \, c}{d x^{3} + 4 \, c}\right ) - 6 \, \sqrt {-c} \arctan \left (\frac {\sqrt {d x^{3} + c} \sqrt {-c}}{c}\right )}{36 \, c^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(d*x^3+4*c)/(d*x^3+c)^(1/2),x, algorithm="fricas")

[Out]

[-1/36*(2*sqrt(3)*sqrt(c)*arctan(1/3*sqrt(3)*sqrt(d*x^3 + c)/sqrt(c)) - 3*sqrt(c)*log((d*x^3 - 2*sqrt(d*x^3 +
c)*sqrt(c) + 2*c)/x^3))/c^2, -1/36*(sqrt(3)*sqrt(-c)*log((d*x^3 + 2*sqrt(3)*sqrt(d*x^3 + c)*sqrt(-c) - 2*c)/(d
*x^3 + 4*c)) - 6*sqrt(-c)*arctan(sqrt(d*x^3 + c)*sqrt(-c)/c))/c^2]

________________________________________________________________________________________

Sympy [A]
time = 3.84, size = 63, normalized size = 0.97 \begin {gather*} \frac {\operatorname {atan}{\left (\frac {\sqrt {c + d x^{3}}}{\sqrt {- c}} \right )}}{6 c \sqrt {- c}} - \frac {\sqrt {3} \operatorname {atan}{\left (\frac {\sqrt {3} \sqrt {c + d x^{3}}}{3 \sqrt {c}} \right )}}{18 c^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(d*x**3+4*c)/(d*x**3+c)**(1/2),x)

[Out]

atan(sqrt(c + d*x**3)/sqrt(-c))/(6*c*sqrt(-c)) - sqrt(3)*atan(sqrt(3)*sqrt(c + d*x**3)/(3*sqrt(c)))/(18*c**(3/
2))

________________________________________________________________________________________

Giac [A]
time = 1.43, size = 53, normalized size = 0.82 \begin {gather*} -\frac {\sqrt {3} \arctan \left (\frac {\sqrt {3} \sqrt {d x^{3} + c}}{3 \, \sqrt {c}}\right )}{18 \, c^{\frac {3}{2}}} + \frac {\arctan \left (\frac {\sqrt {d x^{3} + c}}{\sqrt {-c}}\right )}{6 \, \sqrt {-c} c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(d*x^3+4*c)/(d*x^3+c)^(1/2),x, algorithm="giac")

[Out]

-1/18*sqrt(3)*arctan(1/3*sqrt(3)*sqrt(d*x^3 + c)/sqrt(c))/c^(3/2) + 1/6*arctan(sqrt(d*x^3 + c)/sqrt(-c))/(sqrt
(-c)*c)

________________________________________________________________________________________

Mupad [B]
time = 5.51, size = 94, normalized size = 1.45 \begin {gather*} \frac {\ln \left (\frac {{\left (\sqrt {d\,x^3+c}-\sqrt {c}\right )}^3\,\left (\sqrt {d\,x^3+c}+\sqrt {c}\right )}{x^6}\right )}{12\,c^{3/2}}+\frac {\sqrt {3}\,\ln \left (\frac {2\,\sqrt {3}\,c-\sqrt {3}\,d\,x^3+\sqrt {c}\,\sqrt {d\,x^3+c}\,6{}\mathrm {i}}{d\,x^3+4\,c}\right )\,1{}\mathrm {i}}{36\,c^{3/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*(c + d*x^3)^(1/2)*(4*c + d*x^3)),x)

[Out]

log((((c + d*x^3)^(1/2) - c^(1/2))^3*((c + d*x^3)^(1/2) + c^(1/2)))/x^6)/(12*c^(3/2)) + (3^(1/2)*log((2*3^(1/2
)*c + c^(1/2)*(c + d*x^3)^(1/2)*6i - 3^(1/2)*d*x^3)/(4*c + d*x^3))*1i)/(36*c^(3/2))

________________________________________________________________________________________